LAB 6 - TASK 11
System Calls

John Dempsey
COMP-232: Programming Languages
California State University, Channel Islands
October 1, 2025
Hard Due Date: October 10, 2025

Task 11. System Calls

System calls provide the interface to the Unix kernel. For this task, we will write a
program using the system calls listed below.

Remember if you need help with a system call, like mkdir, you can use the man pages.
Since mkdir is a command and a system call, to view the man page for a system call you
can type: man mkdir.2 or man -s2 mkdir. To display the entire man page at once, you can

type:

% man stat.2 | cat

You can copy the example code found in man stat.2 for step 12 below.
To complete LAB 6, write a program called syscalls.c which:

1. Prints “System Calls”.

2. Display your user name using getpwuid(getuid()).
(getpwuid isn’t actually a system call.)

3. Display your user id by using getuid().

4. Display your group id by using getgid().

5. Display the host you are on using gethostname().

6. Display the domain name of your host using getdomainname().

7. Display your current working directory using getcwd().
1

10.

11.

12.

13.

Check to see if the /etc/passwd file exists using access(). Print “/etc/passwd
exists”.

Check to see if you can read /etc/passwd file exists using access().

Check to see if you can write /etc/passwd file using access().

Using the system() call, run: “id; hostname; domainname; pwd; cat /etc/passwd

| grep <your_user_id>" commands and compare the returned values with the
above system calls. Replace <your user id> with your actual user id on the
system.

Print out the current date/time. You can use the system call time(&t); where t is
defined as a long. Then use tp = localtime(&t); , where tp is defined as struct tm

*tp; to print out the following output:

Date from running time() system call is:

Seconds: 12

Minutes: 14

Hour: 15 Hours 0 to 23.

Day: 17 Day 0 to 31.

Month: 4 Months O to 11.
Year: 2025 Year + 1900.
Weekday: 2 Weekday Sunday=0.
Julian Day: 90

Daylight Savings: 0 Daylight savings flag.

Let’s check the file status of /etc/passwd using stat(). Run man stat.2 to view
example code which you can copy/paste into your program. Print the following
for the /etc/passwd file:

File status for /etc/passwd follows:

File type: regular file
File I-node number: 99999

File Mode (octal): 644

File owner: 99

File group id: 99

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

File size in bytes: 9999

Blocks allocated: 99
Last file status change: <date format>
Last file access: <date format>

Last file modification: <date format>
Using the system() call, run “Is -I /etc/passwd” and check above values returned.
Check to see if the demo.dir directory exists. If it exists, print “demo.dir exists.”
If demo.dir does not exist, create directory demo.dir using mkdir command and
set mode to Ox755.
Change into demo.dir using chdir().
Print working directory using getcwd().
Print your program’s process id using getpid().
Print your program’s parent process id using getppid().
Using the system() call, run “ps -ef > processes.txt; cat processes.txt”. Locate
your program’s process id and parent’s process id in list. (You don’t have to
document this step, just check.)
Let’s check your system out using sysinfo(). Display how long your system has
been up in seconds, minutes, hours, and days; display the load averages for 1, 5,
and 15 minutes; display the amount of free RAM and total RAM; and finally,
display the number of processes running on your system.
Let’s fork a process using fork(). The parent process will create the child.
For the child process:
Print “Child Process”.

Print “Child process id = “ using getpid().

Print “Child’s parent process id = “ using getppid().

3

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Print “ ”

Print output from running “ps -ef” using system().

Print “ ”

For the parent process:

Print “Parent Process”.

Print “Parent process id = “ using getpid().

Print “Parent’s parent process id = “ using getppid().

Using signal(), call killprocess() when a SIGALRM is seen. (To do this, you can add
the following line of code signal(SIGALRM, killprocess); which can be the first
line in your program.)

killprocess() is a function which displays the running processes then kills the
current process. The killprocess() function is provided for you below (after Step

40).

Next, if you are in the parent process, issue the SIGALRM signal in 5 seconds. If
you are in the child process, issue the SIGALRM signal in 10 seconds.

Now for both the child and parent processes go to sleep for 60 seconds using
sleep().

Print “All Done!”

Check the exit status of program using “echo $?”. Do you see 0, 10, or another
number?

Now, display all system calls used called by your syscalls program by running:
% strace syscalls

strace can be used to help locate where your code might be crashing.

41. Review the strace output. Look for the write statement for printing line “All
Done!” performed in step 37.

Here is the killprocess() function:

void killprocess()

{
int pid;

system("ps");

pid = getpid();

printf(" \n");
printf("killprocess() was called. Kill pid = %d\n", pid);

printf(" \n");
fflush(stdout);

kill(pid, SIGKILL);

exit(10);

Expected output as an example:

john@oho:~S syscalls

Your login name is john

Your uid is 1000

Your group id is 1000

/etc/passwd file entry: john:x:1000:1000:,,,:/home/john:/bin/bash
The host name is oho

The domain name is localdomain

File status for /etc/passwd follows:

File type: regular file

File I-node number: 9570149208451419

File Mode (octal): 044

File owner: 0

File group id: 0

File size in bytes: 1769

Blocks allocated: 8

Last file status change:Tue Jan 4 20:27:17 2022
Last file access: Wed Jan 5 11:32:51 2022

Last file modification: Tue Jan 4 20:27:17 2022
-rw-r—--r-— 1 root root 1769 Jan 4 20:27 /etc/passwd

demo.dir exists
CWD = /home/john/demo.dir

System load: 33984 37856 38400 (1, 5, 15 minutes)
Uptime in seconds: 10115 seconds
Uptime in minutes: 168 minutes
Uptime in hours: 02 hours
Uptime in days: 00 days
Free memory: 7 GBs
Total memory: 15 GBs
#processes running: 7 processes
Processes

Process id is 1119
Parent process id is 8
root 1 0 0 08:44 » 00:00:00 /init

6

root 7 1 0 08:44 ttyl 00:00:00 /init

john 8 7 0 08:44 ttyl 00:00:00 -bash

john 1119 8 0 11:32 ttyl 00:00:00 a.out

john 1124 1119 0 11:32 ttyl 00:00:00 sh -c ps -ef|grep 8
john 1126 1124 0 11:32 ttyl 00:00:00 grep 8

Call fork()

Parent process

Child process

Parent process id = 1119

Child process id = 1127

Parent's parent process id = 8

Child's parent process id = 1119

In 5 seconds, the SIGALRM signal will go off in parent process.

Sleep for 60 seconds.

UID PID PPID C STIME TTY TIME CMD

root 1 0O 0 08:44 » 00:00:00 /init

root 7 1 0 08:44 ttyl 00:00:00 /init

john 8 7 0 08:44 ttyl 00:00:00 -bash

root 152 1 0 09:41 tty2 00:00:00 /init

john 153 152 0 09:41 tty2 00:00:00 -bash

john 1119 8 0 11:32 ttyl 00:00:00 a.out

john 1127 1119 0 11:32 ttyl 00:00:00 a.out

john 1128 1127 0 11:32 ttyl 00:00:00 sh -c ps -ef
john 1129 1128 0 11:32 ttyl 00:00:00 ps -ef

In 10 seconds, the SIGALRM signal will go off in child process.
Sleep for 60 seconds.

PID TTY TIME CMD

8 ttyl 00:00:00 bash
1119 ttyl 00:00:00 a.out
1127 ttyl 00:00:00 a.out
1130 ttyl 00:00:00 sh
1131 ttyl 00:00:00 ps

Killed
john@oho:~$ PID TTY TIME CMD
8 ttyl 00:00:00 bash
1127 ttyl 00:00:00 a.out
1132 ttyl 00:00:00 sh
1133 ttyl 00:00:00 ps

